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Inversion of heterogeneous parabolic-type equations
using the pilot points method
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SUMMARY

The inverse problem (also referred to as parameter estimation) consists of evaluating the medium
properties ruling the behaviour of a given equation from direct measurements of those properties and of
the dependent state variables. The problem becomes ill-posed when the properties vary spatially in an
unknown manner, which is often the case when modelling natural processes. A possibility to �ght this
problem consists of performing stochastic conditional simulations. That is, instead of seeking a single
solution (conditional estimation), one obtains an ensemble of �elds, all of which honour the small scale
variability (high frequency �uctuations) and direct measurements. The high frequency component of the
�eld is di�erent from one simulation to another, but a �xed component for all of them. Measurements
of the dependent state variables are honoured by framing simulation as an inverse problem, where
both model �t and parameter plausibility are maximized with respect to the coe�cients of the basis
functions (pilot point values). These coe�cients (model parameters) are used for parameterizing the
large scale variability patterns. The pilot points method, which is often used in hydrogeology, uses the
kriging weights as basis functions. The performance of the method (both its variants of conditional
estimation=simulation) is tested on a synthetic example using a parabolic-type equation. Results show
that including the plausibility term improves the identi�cation of the spatial variability of the unknown
�eld function and that the weight assigned to the plausibility term does lead to optimal results both for
conditional estimation and for stochastic simulations. Copyright ? 2006 John Wiley & Sons, Ltd.
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INTRODUCTION

Parabolic equations represent natural di�usive phenomena and are used in many branches of
engineering. Examples are the equations of heat conduction (industrial), groundwater �ow
(hydrogeology), or molecular di�usion (chemistry and contaminant transport), among others.
Spatial variability of the properties (e.g. hydraulic conductivity for groundwater �ow) enter-
ing those equations can be high but unknown, especially when they represent natural media.
Moreover, it rules the performance of those equations [1]. Therefore, it has to be accounted
for in meaningful models. Identi�cation of the spatial variability is carried out in the context
of inverse modelling [2–8] (also referred to as parameter estimation), which consists of esti-
mating the properties as �eld functions from direct measurements of the properties (e.g. point
values of thermal or hydraulic conductivity) and of dependent state variables (e.g. temperature
and head for the heat transfer and groundwater �ow equations, respectively).
The natural formulation of the inverse problem consists of assuming the state variable to

be known and assume the �eld functions de�ning medium properties to be unknown. Such
formulation is often ill-posed (i.e. a solution may not exist, it may not be unique, and it
is usually unstable) for parabolic equations [9–11]. Moreover, it is not useful for practical
purposes because the state variable is never known throughout the model domain. Therefore,
one needs to parameterize the solution (i.e. to write the �eld functions in terms of a, hopefully
small, number of parameters). Most parameterization techniques may be viewed as functional
spaces where the parameters are the interpolation coe�cients and the set of interpolation func-
tions is a basis. A number of parameterization techniques have been used. Among them, the
method of pilot points [12] has gained steam during recent years in hydrogeology because
it is �exible and because it is formulated in a geostatistical context, so that it allows nat-
ural extensions to stochastic solutions of the governing equations. These are required when
variability is important and unknown [1, 13].
The pilot points method consists of: (1) generating an initial spatially correlated �eld given a

geostatistical model (i.e. measurements, if any, and correlation structure of the �eld function),
(2) de�ning an interpolation method to obtain the value of the �eld functions over the model
domain on the basis of their values at measurement and pilot point locations (model parame-
ters) and (3) obtaining the value of the model parameters in such a way that the interpolated
�eld (step 2) minimizes an objective function measuring the mis�t between calculated and
measured data (often, only state variables are considered). Thus, �nding the optimum value of
model parameters becomes an optimization problem. Note that step 3 implies the perturbation
of the �eld generated in step 1.
As described above, the method su�ers severe limitations. On the one hand, it is unsta-

ble, so that estimated pilot point values often reach non-plausible values. The inclusion of a
regularization term to overcome this problem has been the subject of debate. Certes and de
Marsily [14] reject the use of such a term, questioning its performance, because it depends to
a large extent on the reliability of the prior estimates. RamaRao et al. [15] argue that the plau-
sibility is achieved inherently, given that the initial �eld to be perturbed already honours (1)
the available measurements of the �eld function and (2) the covariance structure describing
the spatial variability patterns as observed in the �eld. Similar arguments are used by other re-
searchers for rejecting the plausibility term [16–20]. Regularization has been used by Doherty
[21]. Yet, his objective was to penalize non-homogeneity of the interpolated �eld rather than
to include prior information about model parameters. Kowalsky et al. [22] used geophysical
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measurements (Ground Penetrating Radar) in a maximum a posteriori geostatistical context.
Recently, Alcolea et al. [23] proposed adding a plausibility term to the objective function, so
as to penalize departures of pilot point values from their prior estimates obtained by kriging.
They showed that the use of such a regularization term improves (1) the identi�cation of
spatial variability and (2) the stability of the problem, allowing the use of larger number
of pilot points, thus sharpening the resolution of the spatial variability. However, they also
found that including the plausibility term may lead to worse results than simply interpolating
from measurements (i.e. not inverting at all) if the plausibility term is not properly weighted.
Fortunately, the use of a maximum likelihood statistical framework allows the identi�cation
of the optimum weight of the plausibility term.
A second limitation of the pilot points method is related to the de�nition of the initial spa-

tially correlated �eld: the original method of de Marsily obtained this �eld through conditional
estimation (variants of kriging [24, 25]). This yields a single ‘best’ solution that minimizes
the �eld variance and honours the available measurements of the �eld function. However, the
resulting �eld is oversmoothed and does not allow a realistic representation of spatial vari-
ability. To overcome this problem, some authors [15–17, 26] included conditional simulations
in the generation of the initial �eld, yielding a set of equally probable realizations of the �eld
functions conditioned to available measurements. That is, each of these simulations reproduces
the expected variability and honours measurements. Therefore, they can be used to evaluate
the uncertainty of predictions. Unfortunately, these methods do not allow the inclusion of a
plausibility term, so that they are essentially unstable.
The objective of this paper is to overcome the above limitations. Speci�cally, we seek a

formulation of the inverse problem capable of generating equally probable simulations of the
�eld functions (e.g. transmissivity �eld) that are conditioned to measurements of the medium
properties and the state variables (e.g. heads). To this end, we extend the method of Alcolea
et al. [23] to the case of conditional simulation. That is, we explore the possibility of using a
regularization term in the case of seeking stochastic simulations of the properties conditioned
upon point measurements of both those properties and dependent state variables.
This paper is organized as follows. First, the methodology is outlined. Second, a synthetic

example using the parabolic groundwater �ow equation is presented. The paper ends with a
discussion of the results and some conclusions about the use of the plausibility term in the
context of the pilot points method.

METHODOLOGY

The proposed method is a modi�cation of the pilot points method. Modi�cations include the
use of a plausibility term and the way the vector of model parameters (value of the �eld
functions at the pilot point locations) is updated through the optimization process. We assume
that the (geostatistical) characteristics of the �eld functions are known. Here, the geostatistical
model is de�ned by an autocorrelation function, but more sophisticated models may be used to
represent complex heterogeneity patterns, geophysical data or known features. The procedure
can be summarized as follows.

1. Parameterization: A �eld function f is expressed as the superposition of two �elds: a
known drift fD(x; t) and an uncertain residual fp(x), which is a linear combination of the
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model parameters pj (Figure 1)

f(x; t)=fD(x; t) + fp(x) (1)

1.1. Calculation of fD(x; t): The drift can be obtained through conditional estimation
(kriging=cokriging) or conditional simulation, depending on whether the modeller is seeking
the characterization of large scale patterns or small scale variability, respectively. Therefore,
it honours hard data (i.e. direct measurements of the �eld function f∗) and possibly soft data
g∗ (correlated with f), that can be included as external drifts. In the case of conditional sim-
ulation, fD(x; t) reproduces the spatial variability patterns as observed in the �eld (honours
the correlation structure as well), if the geostatistical model de�ned previously is informative
enough. For the simple case of linear interpolation, it can be expressed as

fD(x; t)=
dim Z∑
i=1
�Zi (x)Z(xi ; t) (2)

where x is the location where fD is calculated, t and xi are the measurement times and
locations, respectively, and �Zj are the (co-) kriging weights for the measurements [25],
organized in the vector Z=(f∗; g∗). Our implementation of the methodology allows a large
set of conditional estimation=simulation methods: simple kriging, residual kriging, kriging
with locally varying mean, kriging with external drift, simple cokriging, ordinary cokriging,
ordinary cokriging (standardized to the mean value of the primary variable f), among the
methods for conditional estimation [24], plus a sequential simulation algorithm for conditional
simulations [27].
1.2. Parameterization of the uncertain residual fp(x): It can be viewed as the perturbation

that the drift requires to honour measurements of dependent state variables. It is expressed as
a linear combination of the model parameters (value of the �eld function at the pilot point
locations)

fp(x)=
Np∑
j=1
�ppj (x)pj (3)

where Np is the number of pilot points used to parameterize fp(x) (this number does not need
to be the same for all �eld functions representing properties) and �ppj (x) are the (co-) kriging
weights for the model parameters pj, calculated in the same way as �Zi for measurements.
In our implementation, the location of the pilot points can be �xed or vary randomly as the
optimization process proceeds.
2. Prior estimation: Prior estimates of the pilot point values p∗ and the corresponding

a priori error covariance matrix Vp are obtained by conditional estimation=simulation to mea-
surements in vector Z. Note that correlation is included during the estimation process. In fact,
pilot point values should be close (i.e. highly correlated) when pilot point locations are close.
Therefore Vp is a full matrix.
3. Objective function: Using maximum likelihood estimation [28], the optimum set of model

parameters minimize the objective function

F =
nstat∑
i=1
�i(ui − u∗

i )
tV−1
ui (ui − u∗

i ) +
ntypar∑
j=1

�j(pj − p∗
j )
tV−1
pj (pj − p∗

j ) (4)
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f(x)
1. Define drift, fD(x)

Drift based on measurements

Unknown reality

Measurement locations

x

fp(x)
2. Compute perturbation, fp(x)

0

Pilot point locations

Perturbation at pilot point location

Interpolation of pilot point values

x

f(x)
3. f(x) = fD(x) + fp(x)

f(x)

Figure 1. Schematic description of the pilot points method for de�ning a spatial random
function f(x), as the sum of a drift fD(x) and a perturbation fp(x). The drift is de�ned
by conditional estimation (the smooth drift in the �gure) or simulation (a sharper drift;
not depicted) to available measurements. The perturbation is obtained from interpolation of
the unknown pilot point values (model parameters), which are optimized so as to obtain
a good �t with available indirect observations (e.g. measurements of the state variable).
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where ‘nstat’ denotes number of state variables ui with available measurements u∗
i (i.e. in

groundwater, i=1 for heads=drawdowns, i=2 for concentrations, etc.); ‘ntypar’ is the number
of types of model parameters being optimized, with prior information p∗

j (i.e. j=1 for pilot
points linked to transmissivities, j=2 for storativities, etc.). Matrices Vui and Vpj represent
our best guess of the error covariance matrices of state variables and models parameters,
respectively, and �i, �j are weighting scalars correcting errors in the speci�cation of Vui and
Vpj . In our synthetic example, we solve the groundwater �ow equation using only drawdown
data as state variable for identifying the spatial variability of the transmissivity �eld. Thus,
we will term hereinafter Fd the term of state variables and Fp the term of model parameters.
Assuming that error covariance matrix of drawdown is correct (�1 = 1), the simpli�ed objective
function can be written as

F =Fd + �Fp=(s − s∗)tV−1
s (s − s∗) + �(p− p∗)tV−1

p (p− p∗) (5)

While the objective function stated in Equation (4) (or its particularization in (5)) was orig-
inally based on favouring the best match of state variables (Fd), while ensuring stability
and plausibility of the model parameters (Fp), it can also be derived in a statistical frame-
work. Gavalas et al. [29] derived it by maximizing the posterior pdf (probability density
function) of the model parameters, MAP, while Carrera and Neuman [9] arrived to it by
maximizing the likelihood of the parameters given the data, MLE. Instead, Medina and
Carrera [28] prefer working with the expected value of the likelihood function, as it al-
lows the most stable estimation of statistical parameters, i.e. �i and �j. Here, we use the
same formulation.
4. Minimization: The minimization of Equation (4) is performed by means of Levenberg–

Marquardt’s method. This method belongs to the Gauss–Newton family and it consists of
linearizing the dependence of state variables on model parameters, while imposing that the
parameter change �pk at the kth iteration is constrained.
This leads to a linear system of equations [30–32]

(Hk + �kI)�pk =−gk (6)

where Hk is an approximation of the Hessian matrix of F (Equation (4)) and gk its gradient
at pk (vector of model parameters at iteration k), I is the identity matrix and �k is a positive
scalar (the so-called Marquardt’s parameter).
When the objective function takes a form similar to Equation (5), second-order derivatives

of the state variable with respect to the parameters are often neglected, and the approximation
of the Hessian matrix can be written as

Hk =2JtsV
−1
s Js + 2�V

−1
p (7)

where Js is the jacobian matrix (i.e. derivatives of drawdowns with respect to model
parameters at iteration k). The latter can be calculated by direct derivation of the PDE or
by the adjoint state method [33]. The gradient of the objective function can be
written as

gk =2JtsV
−1
s (s − s∗) + 2�V−1

p (p− p∗) (8)
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5. Updating the vector of model parameters: After each iteration, the vector of model
parameters is updated as

pk+1 = pk + �pk (9)

Prior to updating, the components of vector �pk are examined. If any of them is larger than
a given threshold, all of them are reduced accordingly. Thus, an upper bound (per iteration)
limits the maximum step size.
Steps 4 and 5 are repeated until convergence, which is checked using the criteria of Med-

ina et al. [34]: (a) the maximum increment of parameters (per iteration) is very small,
(b) the change in the objective function between two consecutive iterations is negligible,
(c) the gradient norm is very small or (d) the ratio between the gradient norm and its value
at the �rst iteration is small enough. The algorithm also stops if the numbers of iterations
or failed iterations (those increasing the objective function) reach threshold values. In our
experience, (d) is possibly the best check of convergence and, in this work, a reduction factor
of 106 of the norm of the gradient was adopted as indicator of convergence.
To verify uniqueness, it is advisable to repeat the estimation starting from di�erent initial

values for model parameters. Starting from the drift (zero values to model parameters) is
a good strategy. Starting from large values for pilot point perturbations usually leads to a
good convergence. On the contrary, starting from values that are too low often leads to poor
convergence.
6. A posteriori statistical analysis: The optimization process is repeated using di�erent

values of the weighting scalars �i and �j, whose optimum values are the ones leading to the
maximum of the expected likelihood, equivalent to the minimum of the support function [28]

S2 =N + ln |H|+ N ln
(
F
N

)
−

ntypar∑
j=1

kj ln �j (10)

Here, N is the total number of data, kj is the number of prior information data of the jth
parameter type and H is the approximation of the Hessian matrix at the end of the optimization
process.
Note that the methodology for variants of conditional estimation and conditional simulation

only di�ers in the generation of the initial drift (step 1.1). This drift is unique in the case of
conditional estimation and there are many realizations for conditional simulation. In the latter
case, steps 2–6 must be repeated for each realization of the initial drift.

APPLICATION

The objective of this example is to extend the results of the previous work of Alcolea
et al. [23] to the case of conditional simulation, exploring the possibility of using a plausibility
term.
Results are explored on the basis of a synthetic example, consisting of the simultaneous

interpretation of three pumping tests ruled by the parabolic groundwater �ow equation

∇(T∇h)= S @h
@t

on � (11)
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where � is the �ow domain, T is the transmissivity tensor, S is storativity and h is head (the
state variable). Initial and boundary conditions can be written as

h(t=0)= h0(x) on �

T∇hn= �(H − h) +Q on �
(12)

where � denotes the boundary of the �ow domain, n is a unit vector normal to � and
pointing outwards, H and Q are prescribed heads and �ows, respectively, and � is a coe�cient
controlling the type of boundary condition (�=0 for prescribed �ow, �→ ∞ for prescribed
head and a mixed condition otherwise). When pumping tests are interpreted, it is useful to
work with drawdowns (di�erence between head in presence of pumping and head in absence
of pumping), denoted as ‘s’ hereinafter. This leads to homogeneous (zero) initial and boundary
drawdowns, as well as boundary �ow rates. Equation (11) is solved applying the Galerkin
method in space and forward �nite di�erences in time. Elements are quadrangular bilinear.
The �ow domain is a square of 400× 400m2, despite it is enlarged to avoid spurious

boundary e�ects to a global domain of 3600× 3600m2 (Figure 2(a)). The �nite element grid
is more re�ned in the central part (zone of interest, Figure 2). There, the �nite element mesh
is structured. Outside, the element size increases as the mesh progresses towards the boundary
domain (Figure 2(a)).
The ‘true’ log transmissivity �eld (log10 T hereinafter) was generated with the code

TRANSIN [34] by sequential simulation (Figure 2(a)) conditional to a set of measurements
de�ning two channels of high transmissivity. The ‘true’ variogram (�eld variance minus
autocorrelation function) is spherical, with a range of 200m and a variance of 2, without
nugget e�ect. Values of the ‘true’ log10 T �eld range from −9:1 to 0.5, with a mean value
of −4[log10(m2=s)]. In this work, only the heterogeneity of the log10 T �eld was explored.
Storativity was assumed to be constant and known over the whole domain, with a value
of 10−4.
Thirteen measurements of log10 T were selected from the ‘true’ �eld as conditioning data.

Measurement locations were purposefully selected in such a way that the initial drift of
Equation (2) (calculated by ordinary kriging or by sequential simulation, for the cases of
conditional estimation=simulation, respectively) was radically di�erent from the ‘true’ �eld
(Figure 2(b)). Note that, indeed, the high log10 T channels crossing the zone of interest are
missed by the drift. Thus, the performance of the model is heavily dependent on the calibration
of the perturbation �eld fp. This setup was chosen to ensure that the plausibility term, which
biases the solution towards the drift, would hinder �nding a good solution.
Drawdown data comes from three independent pumping tests (but analysed simultaneously)

in the most productive wells of the central domain (pumping rates of 10−2 m3=s at wells B1,
B2 and B3 in Figure 2). Transient drawdowns were simulated at grid nodes (Figure 3),
assuming a zero drawdown as initial condition and prescribed at the boundaries of the global
domain. Drawdown measurements were calculated at the thirteen points where log10 T mea-
surements are available (total of 936 drawdown data). A Gaussian white noise was added
to those measurements, simulating acquisition errors, with a standard deviation of 0.3m for
pumping at wells B1 and B2 and 0.15m at well B3 (1% of the maximum drawdown at each
one of the tests).
In the previous work of Alcolea et al. [23], the optimum weight of the plausibility term

was found for the case of conditional estimation. For the purpose of this paper, we take
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Figure 2. Test problem description: (a) �nite element mesh and �ow domain; (b) true log10 T
�eld and location of conditioning measurements. All boundaries have a prescribed drawdown
condition (zero). White square limits the zone of interest, where three pumping tests are performed
independently at points B-1, B-2 and B-3. Below, initial drifts, obtained by kriging of the thirteen
log10 T measurements (c) and by conditional simulation (cases listed in Table I). Note that they

are radically di�erent from the ‘true’ �eld depicted above.
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Figure 3. ‘True’ drawdown after pumping (t=7200 s) at wells: (a) B-1; (b) B-2; and (c) B-3. The zone
of interest (central square of 400× 400m2) has been enlarged two hundred meters each side.

as starting point the conditional estimations using 97 pilot points located in a regular grid
(Figure 5; row 1, column 3) and explore the optimum weight of the plausibility term when
the initial correlated �elds are drawn by conditional simulations (a total of 10 realizations).
We use values of the weighting factor ranging from 10−1 to 102. This range of values was
selected by taking into account that the optimum value of � should be one if the variogram
is error-free (log10 T variogram used in the calibrations was the ‘true’ one). High values of
� give too much weight to the plausibility term. This should result in a poor identi�cation of
the spatial variability, as the �eld would be biased towards the initial drift (Figure 2(b)). On
the contrary, small values of � tend to disregard the plausibility term, thus risking instability.

RESULTS

Results are explored in the same way as in the previous work [23]: qualitatively (log10 T
maps and drawdown �ts) and quantitatively. For the latter, an error vector e is de�ned as the
di�erence between calculated and ‘true’ values of log10 T at the central part of the domain
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(1600 blocks of 10× 10m2). We analyse the following statistics:
(1) Total objective function and its drawdowns and parameters components (F , Fd and Fp

in Equation (5), respectively). These are not good comparison criteria as they grow
(F and Fd) or decrease monotonically (Fp) with �.

(2) Support function of the expected likelihood (Equation (10)), whose minimization should
lead to the optimum value of �.

(3) Mean error: measures the match between calculated and ‘true’ values of log10 T

elog10 T =
1
1600

1600∑
i=1

|ei|= 1
1600

1600∑
i=1

| log10 T calc − log10 T true| (13)

We used this criterion rather than the raw one measuring the estimation bias (identical
but without absolute value), given that the latter, also evaluated, was close to zero in
most cases, as expected. Therefore, it did not shed new light on this research.

(4) Root mean square error of log10 T : this is the basic raw criterion to evaluate the good-
ness of the identi�cation. Theoretically, it should be smaller than the a priori deviation
(square root of the variogram sill,

√
2 in this case), if conditioning is good

RMSElog10 T =
(

1
1600

ete
)1=2

(14)

As will be discussed later, mean error and root mean square error are very sensitive to the
location and extreme values of the zones of high=low transmissivity.
Table I displays a comparison between the evolution of the statistics with the weight of

the plausibility term for the conditional estimation and two out of ten conditional simulations.
Table II summarizes the quantitative comparisons and contains the value of � for which the es-
timation statistics reach their optimum value. For instance, the minimum value of RMSElog10 T
is attained at �=0:1 in simulation 5. Figure 4 displays the quantitative comparison in terms
of the support function of the expected likelihood S2 and the estimation errors, elog10 T and
RMSElog10 T . Identi�cations of log10 T are presented in Figure 5. Figure 6 displays the best
matching of drawdown.
The �rst observation that becomes apparent from Table I is the strong e�ect of the de-

pendence of the plausibility term, as occurred in the previous work. The relative importance
given to this term is measured by the value of the weighting factor �. Using small val-
ues for this factor (little importance of the plausibility term, disregarding prior estimates in
the optimization process and therefore, prior information) consistently leads to the best �t
of drawdowns (minimum value of Fd) and to the worst �t of model parameters (maximum
value of Fp), as expected. Identi�cations of the spatial variability (Figure 5; last row, column
2) using a weighting factor of 10−1 o�er a somewhat ‘lumpy’ appearance, with large jumps
in the calibrated transmissivity over small distances. In fact, when the drift is generated by
conditional estimation, Alcolea et al. [23] found the optimum identi�cation when � equals
0.1 (the minimum value tested in this example), that yields the worst qualitative identi�cation
of the log10 T �eld in this work. In fact, values of � lower than 10−1 were excluded from
this study due to instability problems.
Similarly, large values of the weighting factor also yield poor results. The �nal solution

tends to be close to the initial drift (Figure 5, �rst row), which contains little information
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Table I. Summary of results of the sensitivity analysis to the weighting factor �, for the conditional
estimation CE (from Reference [23]) and two out of ten conditional simulations CS. Minimum values

for each set are written in italic characters.

Test problem Objective function (Equation (5)) Estimation errors

Weighting Total Drawdown Parameters
factor obj. func. obj. func. obj. func. S2 elog 10T RMSElog10 T
� (F) (Fd) (Fp) (Equation (8) (Equation (11)) (Equation (12))

�→ ∞ 1:156× 106 1:156× 106 — — 1.390 1.831
102 17426 5566 119 4018 1.525 2.081
101 3070 1318 175 2267 1.408 2.001

CE 100 1033 829 203 1205 1.025 1.456
3× 10−1 875 784 302 1074 0.950 1.386
10−1 787 753 348 1007 0.961 1.331
10−2 759 744 1501 1075 1.431 2.080
10−3 741 737 3690 1214 2.016 2.938

�→ ∞ 7:677× 105 7:677× 105 — — 1.71 2.20
102 8467 2856 56 3193 1.37 1.82

CS 2 101 1621 917 70 1536 1.73 2.29
100 901 784 117 998 1.03 1.42
10−1 773 747 253 958 1.38 1.89

�→ ∞ 1:233× 106 1:233× 106 — — 1.64 2.12
102 9294 2670 66 3286 1.36 1.89

CS 8 101 2117 1095 102 1804 1.40 1.94
100 912 783 129 1013 1.15 1.57
10−1 774 750 244 933 1.22 1.67

Table II. Values of the weighting factor � for which the estimation errors are
minima (CE and CS denote conditional estimation and conditional simula-
tion, respectively). The tested values of � were 10−1, 100, 101 and 102. The
optimum identi�cation of the spatial variability, as measured by the support
function of the expected likelihood S2 (Equation (10)) is always attained

when � equals 0.1.

Test problem elog10 T (Equation (13)) RMSElog10 T (Equation (14))

CE 10−1 10−1

CS 1 100 100

CS 2 100 100

CS 3 10−1 10−1

CS 4 100 100

CS 5 10−1 10−1

CS 6 102 102

CS 7 10−1 10−1

CS 8 100 100

CS 9 100 100

CS 10 102 102
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Figure 4. Support function of the expected likelihood and estimation errors versus � and:
(a) support function S2; (b) mean error elog10 T ; and (c) RMSElog10 T (dashed horizontal line

displays theoretical threshold value of
√
2).

about the actual variability of the ‘true’ �eld. However, estimation errors are sometimes smaller
when � equals 102 than the ones in the case of 101 (see CS2 in Table I and Figures 4(b)
and (c)). We attribute this e�ect to the sensitivity of the estimation errors to the geometrical
de�nition and extreme values of the high transmissivity channels (i.e. a small error in the
position or the inclination of the channels may lead to large values of the estimation errors).
As displayed in Figure 5 (column 2), the identi�cation of the log10 T �eld in row 2 (�=10

2)
is worse than the one in row 3 (�=101), although its estimation errors are smaller. This
e�ect is not reproduced for the case of conditional estimation.
Optimum identi�cations, as measured by criteria S2, are obtained when � equals 10−1 in

the ten conditional simulations, the same result attained by Alcolea et al. [23] for conditional
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Figure 5. Qualitative comparison of the results: Row 1. ‘True’ �eld, log10 T conditioning measurements,
common scale bar and situation of pilot points. Row 2: drifts to be perturbed (column 1 obtained by
ordinary kriging of the log10 T measurements; columns 2 and 3 by sequential simulation). Rows 3–6
display the results after conditioning to log10 T and drawdown measurements with varying weight �.
The ‘true’ �eld is resembled when optimum weight is assigned, as measured by S2 (in all cases, when
� equals 0.1). Conditional estimation resembles the large scale patterns of the ‘true’ �eld, despite the

identi�cations of the spatial variability are oversmoothed.
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Figure 6. Time evolution of measured (circles) and computed drawdowns in response to pumping at B-3
at selected observations points. Results of conditional estimation (black line) and two of the conditional
simulations are presented. Note that the �t of drawdown data is almost the same in the three cases.
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estimation. This is important because it suggests that the modeller does not need to identify
the optimum weight for each conditional simulation (usually a large number), but to obtain
it just once using the method in its variant of conditional estimation.
Another result shared by conditional estimation and simulation is that, if the plausibility term

is not properly weighted, the identi�cation of the spatial variability is worse than the initial
drift, as measured by estimation errors (Table I). However, the use of the methodology in a
maximum likelihood framework allows the estimation of the weighting factor �. Therefore,
the use of a plausibility term is advisable, independently of how the drift was calculated.
Figure 6 displays the best drawdown �t (� equals 0.1) for the conditional simulations at

Table I and the conditional estimation. Calculated drawdowns are very similar in all cases and
�t the data. In fact, drawdown objective functions were very similar in all cases (Table I).
Despite the best match to drawdown data is obtained when the plausibility term is neglected,
the drawdown �ts for the optimum identi�cation of the log10 T �eld (optimum weighting
scalar �) were nearly as good as the best ones (� → 0) and the simulation was stable.

CONCLUSIONS

The pilot points method provides a powerful tool for the identi�cation of the �eld functions
ruling the behaviour of a PDE. The suggested approach includes a plausibility term in the
optimization process and two ways for calculating the initial drift, by conditional estimation
or simulations conditioned to the direct measurements of the �eld function. Conditional esti-
mation leads to optimal results (i.e. minimum estimation errors) but fails to reproduce small
scale variability, which may be important when using the model for predictions. Instead,
conditional simulation seeks a set of equally likely realizations of the �eld conditioned to
all available information. Both variants have been tested on a synthetic example using the
parabolic groundwater �ow equation, examining the role of the plausibility term.
We have found that, neglecting the plausibility term, which is the standard approach in

the context of pilot points, favours the best match of drawdown data, but often leads to an
unstable identi�cation of the model parameters. Large values give too much importance to
the plausibility term, which biases the solution towards the drift. If the geostatistical model
contains little information of the variability patterns (as in our synthetic example), the solution
yields poor identi�cations of the spatial variability. In fact, a disturbing �nding is that, in
most cases, conditioning the �elds to state variable data worsens the results if the plausibility
term is not weighted properly. Fortunately, the use of a statistical framework (maximum
likelihood in this case) allows the estimation of the optimum weight of the plausibility term,
and therefore, its use is recommended. However, to search this optimum weight for each
conditional simulation can be tedious.
A key �nding of this work is that the optimum value of the weighting factor (as measured

by the support function of the expected likelihood) was the same as the one obtained using
conditional estimation. This frees the modeller of the burden of having to seek the optimum
weight at each conditional simulation (usually a large number).
Good �ts to measured state variable were obtained when neglecting (assigning low weight

to) prior information. Still, �ts nearly as good were obtained with stable simulations when
moderate weights were assigned to prior information. We stress that the prior information
provides a valuable data of aquifer heterogeneity, even when it is poorly informative of the
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actual variability. Thus, the use of a plausibility term including it (usually disregarded in the
context of pilot points) needs to be considered.
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